Issue 32, 2020

Nanostructure-assisted charge transfer in α-Fe2O3/g-C3N4 heterojunctions for efficient and highly stable photoelectrochemical water splitting

Abstract

The development of semiconductor heterojunctions is a promising and yet challenging strategy to boost the performance in photoelectrochemical (PEC) water splitting. This paper describes the fabrication of a heterojunction photoanode by coupling α-Fe2O3 and g-C3N4via aerosol-assisted chemical vapour deposition (AACVD) followed by spin coating and air annealing. Enhanced PEC performance and stability are observed for the α-Fe2O3/g-C3N4 heterojunction photoanode in comparison to pristine α-Fe2O3 and the reason is systematically discussed in this paper. Most importantly, the fabricated α-Fe2O3/g-C3N4 film shows impressive stability, retaining more than 90% of the initial current over 12 h operating time. The excellent stability of the heterojunction photoanode is achieved due to the unique nanoflake structure of α-Fe2O3 induced by AACVD. This nanostructure promotes good adhesion with the g-C3N4 particles, as the particles tend to be trapped within the α-Fe2O3 valleys and eventually create strong and large interfacial contacts. This leads to improved separation of charge carriers at the α-Fe2O3/g-C3N4 interface and suppression of charge recombination in the photoanode, which are confirmed by the transient decay time, charge transfer efficiency and electrochemical impedance analysis. Our findings demonstrate the importance of nanostructure engineering for developing heterojunction structures with efficient charge transfer dynamics.

Graphical abstract: Nanostructure-assisted charge transfer in α-Fe2O3/g-C3N4 heterojunctions for efficient and highly stable photoelectrochemical water splitting

Supplementary files

Article information

Article type
Paper
Submitted
24 Feb 2020
Accepted
22 Jul 2020
First published
27 Jul 2020

Dalton Trans., 2020,49, 11317-11328

Nanostructure-assisted charge transfer in α-Fe2O3/g-C3N4 heterojunctions for efficient and highly stable photoelectrochemical water splitting

N. A. Arzaee, M. F. Mohamad Noh, N. S. H. Mohd Ita, N. A. Mohamed, S. N. F. Mohd Nasir, I. N. Nawas Mumthas, A. F. Ismail and M. A. Mat Teridi, Dalton Trans., 2020, 49, 11317 DOI: 10.1039/D0DT00683A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements