Issue 20, 2020

MnO2 flowery nanocomposites for efficient and fast removal of mercury(ii) from aqueous solution: a facile strategy and mechanistic interpretation

Abstract

We report the synthesis of MnO2 flowery nanocomposites consisting of MnO2 nanoflowers grown over the surface of clay nanomaterials using an easy and green approach. The MnO2 nanocomposites were explored as a cost-effective nanoadsorbent for mercury removal from aqueous solution and they demonstrated excellent efficiency towards mercury uptake. Monolayer molecular adsorption of Hg(II) was attained over the surface of the MnO2 nanocomposites and the experimental data acquired in the kinetic study demonstrated that the Hg(II) adsorption kinetics proceeded via a pseudo-second-order kinetic model. pH dependent adsorption study revealed that their sorption capacity increases until pH 7.0 and then gradually decreases with increasing pH. Apart from the experimental study, we have provided a mechanistic interpretation to illustrate the mechanism of kinetics and thermodynamics during Hg(II) adsorption. Theoretical understanding along with experimental results indicates a spontaneous and highly favorable Hg(II) uptake up to 50 °C, representing endothermicity of the adsorption process and then exothermicity above 50 °C, resulting in reduced sorption capacity. The exceptional adsorption performance of the MnO2 nanocomposites may be attributed to their negative surfaces, which facilitated the binding of positively charged Hg(II) ions through electrostatic interaction. Hence, MnO2 nanocomposites proved to be an effective and inexpensive nanoadsorbent for the removal of Hg(II) from aqueous solution and may hold a promise for wastewater treatment.

Graphical abstract: MnO2 flowery nanocomposites for efficient and fast removal of mercury(ii) from aqueous solution: a facile strategy and mechanistic interpretation

Supplementary files

Article information

Article type
Paper
Submitted
20 Mar 2020
Accepted
15 Apr 2020
First published
15 Apr 2020

Dalton Trans., 2020,49, 6790-6800

MnO2 flowery nanocomposites for efficient and fast removal of mercury(II) from aqueous solution: a facile strategy and mechanistic interpretation

S. Das, A. Samanta, K. Kole, G. Gangopadhyay and S. Jana, Dalton Trans., 2020, 49, 6790 DOI: 10.1039/D0DT01054E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements