Issue 42, 2020

Five-coordinate transition metal complexes and the value of τ5: observations and caveats

Abstract

The τ5 parameter, first proposed by Addison and coworkers, is the principal measure of the geometry of five-coordinate transition metal complexes, with τ5 = 0 said to describe a perfect square pyramidal geometry and τ5 = 1 a perfect trigonal pyramidal geometry. Therefore, the geometries of all five-coordinate complexes are assumed to lie on a continuum between these two extremes. Herein we show that there are a significant number of examples of transition metal complexes having τ5 > 1, leading to an equatorially distorted trigonal bipyramidal geometry with the transition metal ion lying out of the plane of the equatorial donor atoms. We also show that complexes having τ5 = 0 and displaying perfect square pyramidal geometry are very much the exception, and that the majority of complexes for which τ5 = 0 have the metal ion sitting above the mean plane of the donor atoms in the square plane, in a basally distorted square pyramidal geometry. Density functional theory computations on a number of these complexes show that the structural distortions are inherent features of the complexes, and not merely the result of intermolecular interactions.

Graphical abstract: Five-coordinate transition metal complexes and the value of τ5: observations and caveats

Supplementary files

Article information

Article type
Paper
Submitted
26 Aug 2020
Accepted
05 Oct 2020
First published
06 Oct 2020

Dalton Trans., 2020,49, 14798-14806

Five-coordinate transition metal complexes and the value of τ5: observations and caveats

A. G. Blackman, E. B. Schenk, R. E. Jelley, E. H. Krenske and L. R. Gahan, Dalton Trans., 2020, 49, 14798 DOI: 10.1039/D0DT02985H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements