Issue 3, 2020

A more stable lithium anode by mechanical constriction for solid state batteries

Abstract

In solid state batteries, lithium dendrites form when the applied current density is higher than a critical value. The critical current density is often reported as 1–2 mA cm−2 at an external pressure of around 10 MPa. In this work, a more advanced mechanical constriction technique is applied on a solid-state battery constructed with Li10GeP2S12 (LGPS) as the electrolyte and a lithium metal/graphite composite as the anode, where the graphite layer was applied to prevent (electro-)chemical reactions between Li metal and LGPS, as well as a short-circuit upon the application of pressure. The decomposition pathway of LGPS at the anode interface is modified by this mechanical constriction design, and the growth of lithium dendrites is inhibited, leading to excellent rate and cycling performances. No short-circuit or lithium dendrite formation is observed for batteries cycled at a current density up to 10 mA cm−2.

Graphical abstract: A more stable lithium anode by mechanical constriction for solid state batteries

Supplementary files

Article information

Article type
Paper
Submitted
11 Dec 2019
Accepted
22 Jan 2020
First published
22 Jan 2020

Energy Environ. Sci., 2020,13, 908-916

A more stable lithium anode by mechanical constriction for solid state batteries

Y. Su, L. Ye, W. Fitzhugh, Y. Wang, E. Gil-González, I. Kim and X. Li, Energy Environ. Sci., 2020, 13, 908 DOI: 10.1039/C9EE04007B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements