Issue 8, 2020

Balancing the pre-aggregation and crystallization kinetics enables high efficiency slot-die coated organic solar cells with reduced non-radiative recombination losses

Abstract

Slot-die coating being compatible with the roll-to-roll technique has been regarded as a promising tool for upscaling the manufacturing of organic solar cells (OSCs). However, there has been a significant gap between the efficiencies of the state-of-the-art spin-coated devices and the scalable processed devices. The active layer morphology is crucial to achieve high efficiency in OSCs, which depends on the conditions of film fabrication. To figure out and optimize the slot-die coating process, a deeper understanding of the film formation kinetics is important. Herein, in situ measurements of the slot-die coating process based on the PM7:IT4F system are demonstrated to illustrate the aggregation and crystallization evolution at various die temperatures and substrate temperatures. OSCs with a high power conversion efficiency of 13.2% are achieved at 60 °C die temperature/60 °C substrate temperature due to the improved exciton dissociation, charge transport and suppressed non-radiative charge recombination. The optimized morphology is attributed to the balanced polymer pre-aggregation and small molecule crystallization kinetics. The unsuitable die temperature leads to overlarge phase separation and consequently inefficient exciton dissociation while the improper substrate temperature results in weak crystallization and the following shrunken carrier lifetime with strong non-radiative combination. This work provides fundamental understanding on the correlations among processing methodology, solution pre-aggregation, morphology formation kinetics, device physics and device performance and affords guidance for device optimization in scalable manufacturing.

Graphical abstract: Balancing the pre-aggregation and crystallization kinetics enables high efficiency slot-die coated organic solar cells with reduced non-radiative recombination losses

Supplementary files

Article information

Article type
Paper
Submitted
11 Mar 2020
Accepted
11 Jun 2020
First published
12 Jun 2020

Energy Environ. Sci., 2020,13, 2467-2479

Balancing the pre-aggregation and crystallization kinetics enables high efficiency slot-die coated organic solar cells with reduced non-radiative recombination losses

B. Lin, X. Zhou, H. Zhao, J. Yuan, K. Zhou, K. Chen, H. Wu, R. Guo, M. A. Scheel, A. Chumakov, S. V. Roth, Y. Mao, L. Wang, Z. Tang, P. Müller-Buschbaum and W. Ma, Energy Environ. Sci., 2020, 13, 2467 DOI: 10.1039/D0EE00774A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements