Issue 10, 2020

Isothermally crystallized perovskites at room-temperature

Abstract

The solution processability of photoactive halide perovskites differentiates them from traditional inorganic semiconducting materials that require multiple post-processing steps such as thermal/vacuum/blowing- and solvent-assisted treatment. Here we report a technical breakthrough of isothermally crystallizing high-quality perovskite films at room-temperature (RT) without the necessity of any post-processing. This process takes advantage of our discovery of a metastable intermediate of lower-dimensionality formed by amine-assisted crystallographic lattice expansion from an initial three-dimensional perovskite. Using in situ optoelectrical/chemical and ex situ structural characterizations, a detailed understanding of the low-dimensional metastable intermediate is developed. In conjunction with the metastable intermediate, the rapid evaporation of the solvent and amine facilitates ultra-fast crystallization at RT within seconds. This RT rapidly synthesized perovskite film exhibits a carrier diffusion length of 2.9 μm and {00l} preferred orientation with an ultrahigh Lotgering factor of 97%. These films are highly compatible to conventional or inverted devices, demonstrating 22.3% and 23.1% power conversion efficiencies, respectively.

Graphical abstract: Isothermally crystallized perovskites at room-temperature

Supplementary files

Article information

Article type
Communication
Submitted
18 Jun 2020
Accepted
18 Aug 2020
First published
21 Aug 2020

Energy Environ. Sci., 2020,13, 3412-3422

Author version available

Isothermally crystallized perovskites at room-temperature

K. Wang, C. Wu, Y. Hou, D. Yang, T. Ye, J. Yoon, M. Sanghadasa and S. Priya, Energy Environ. Sci., 2020, 13, 3412 DOI: 10.1039/D0EE01967D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements