Issue 12, 2020

Controlling the crystallization dynamics of photovoltaic perovskite layers on larger-area coatings

Abstract

As perovskite solar cells are highly efficient and already meet the efficiency requirement for renewable power generation, more attention is given to technological barriers such as scalability and stability. In particular, the large efficiency losses associated with upscaling lab-scale devices to large-area modules represents one of the major hurdles for commercialization. Given the essential role of the perovskite films in the device performance, it is of critical importance to develop reliable crystallization protocols to deposit high-quality perovskite layers via scalable methods. This review summarizes recent advances in emerging crystallization protocols for the large-scale deposition of perovskite thin films. The unique merits of the well-developed crystallization strategies, including antisolvent, gas quenching, vacuum quenching, etc., are carefully analyzed and discussed. We highlight that, independent of the coating method, creating intermediate phases to decouple the otherwise overlapped solution coating and crystal growth is essential to realize homogeneous coatings of perovskite thin films. Strategies for enhancing the crystal morphology of perovskite films are presented as well, which is vitally important to realize reproducible manufacturing of large-area modules. This tutorial review assists the screening and development of robust crystallization strategies for scalable deposition of high-quality perovskite films for photovoltaic applications.

Graphical abstract: Controlling the crystallization dynamics of photovoltaic perovskite layers on larger-area coatings

Article information

Article type
Review Article
Submitted
12 Aug 2020
Accepted
09 Oct 2020
First published
10 Oct 2020

Energy Environ. Sci., 2020,13, 4666-4690

Controlling the crystallization dynamics of photovoltaic perovskite layers on larger-area coatings

L. Zeng, S. Chen, K. Forberich, C. J. Brabec, Y. Mai and F. Guo, Energy Environ. Sci., 2020, 13, 4666 DOI: 10.1039/D0EE02575E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements