Issue 10, 2020

Evaluating the accuracy of two in situ optical sensors to estimate DOC concentrations for drinking water production

Abstract

Two in situ optical sensors, a single-excitation fluorescence-based sensor (fDOM) mounted on a multi-parameter EXO2 sonde (YSI), and a stand-alone, multispectral absorbance-based instrument (spectro::lyser, scan Messtechnik GmbH), were evaluated for their capability to (i) estimate river dissolved organic carbon (DOC) concentrations and (ii) provide oversight of drinking water production. The sensors were deployed between March and November 2017 in the river Fyris, which drains a mixed forested and agricultural 2003 km2 catchment and serves as a drinking water source by managed aquifer recharge. Grab samples were collected every 2 to 3 weeks and compared with logged sensor data collected at 15 minute intervals. The fDOM probe signal was used to estimate DOC concentrations in the range of 10.4 to 24.4 mg L−1 using linear regression (R2 = 0.71, RMSE = 2.5 mg L−1), after correction for temperature, turbidity and inner-filter effects. Temporal changes in DOC character associated with the mixed land use landscape, as indicated by optical indices, reduced this sensor accuracy for estimating DOC concentration. Nevertheless, humic substance concentrations, the fraction of DOC that is preferentially removed during artificial infiltration, were well captured. The spectrolyser signal was used to establish a 2-component partial least square model that captured DOC fluctuations from 10.2 to 29.4 mg L−1 (R2 = 0.92; RMSE = 1.3 mg L−1). This multiple-wavelength model (220 to 720 nm) effectively handled the changes in DOC composition while accurately estimating DOC concentrations. This study explores the advantages and limitations of optical sensors for their use in managed aquifer recharge and drinking water production in relation to DOC levels.

Graphical abstract: Evaluating the accuracy of two in situ optical sensors to estimate DOC concentrations for drinking water production

Supplementary files

Article information

Article type
Paper
Submitted
18 Feb 2020
Accepted
22 Jul 2020
First published
02 Sep 2020
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Water Res. Technol., 2020,6, 2891-2901

Evaluating the accuracy of two in situ optical sensors to estimate DOC concentrations for drinking water production

S. Hoffmeister, K. R. Murphy, C. Cascone, J. L. J. Ledesma and S. J. Köhler, Environ. Sci.: Water Res. Technol., 2020, 6, 2891 DOI: 10.1039/D0EW00150C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements