Structural and physicochemical changes in almond milk during in vitro gastric digestion: impact on the delivery of protein and lipids†
Abstract
Almond milk (about 3% protein and 7% lipids) was prepared using wet disintegration of raw almonds and then subjected to in vitro gastric digestion using an advanced dynamic digestion model (i.e., a human gastric simulator). Microstructural changes, physicochemical behavior, and protein digestion were examined; the release of lipids and protein during digestion was quantified. Under acidic gastric conditions, almond oil bodies flocculated. Proteolysis by pepsin led to destabilization and coalescence of the oil bodies, resulting in creaming and phase separation. This phase separation significantly delayed the delivery of lipids to the small intestine. After 225 min of digestion, ∼42% of the lipids remained in the stomach. In contrast, protein release was not significantly affected by the gastric behavior of the almond oil bodies. This study provides a better understanding of how the digestive system manages plant lipids, and may be useful in the microstructural design of foods to achieve a controlled physiological response during digestion.