Issue 3, 2020

Engineering water-induced ceramide/lecithin oleogels: understanding the influence of water added upon pre- and post-nucleation

Abstract

A mixture of ceramide (CER) and lecithin (LEC) at specific ratios was capable of forming oleogels in sunflower oil triggered by adding a trace amount of water. It was noted that the addition of water at different temperatures (TW) resulted in different gelation behaviors and microstructures. To better illuminate the assembly mechanism at different TW, samples with water added at different TW (20 °C, 45 °C, 70 °C and 95 °C) were prepared. The viscoelastic properties, microstructures, and the crystal packing of these samples were investigated. It was observed that all samples prepared at TW of 20 °C and 95 °C formed gels, while most samples prepared at TW of 45 °C and 70 °C were too weak to form gels. Gels prepared at 95 °C were stronger but more fragile in texture compared to gels produced at 20 °C. The crystal morphology of gels drastically changed with TW. Spindle-shaped crystals were observed in gels prepared at low TW (20 °C), while gels prepared at high TW (95 °C) exhibited a network with packed oil droplets stabilized by lamellar shells together with fibrillar crystals in the bulk phase. X-ray diffractograms showed a different reflection peak (d-spacing of 14.5 Å) in gel prepared at 20 °C, compared to the d-spacing in oleogels with a single gelator (13.14 Å and 15.33 Å, respectively, for CER and LEC). Gel prepared at 95 °C showed two long-spacing characteristic peaks, which correspond to the characteristic peaks of CER gel (∼13 Å) and LEC gel (∼12 Å). Fourier transform infrared spectroscopy results indicated that the different gelation behaviors at different TW were mainly caused by vibrational changes in the amide bond of CER. Our hypothesized assembly mechanism can be concluded as: increasing TW resulted in the conversion of CER and LEC crystallization from co-assembly (TW = 20 °C) to self-sorting by individual gelators (TW = 95 °C). In this study, novel water-induced oleogels were produced by manipulating TW, and such information further assists the rational design of lipid-based healthy fat products.

Graphical abstract: Engineering water-induced ceramide/lecithin oleogels: understanding the influence of water added upon pre- and post-nucleation

Article information

Article type
Paper
Submitted
29 Oct 2019
Accepted
26 Feb 2020
First published
26 Feb 2020

Food Funct., 2020,11, 2048-2057

Engineering water-induced ceramide/lecithin oleogels: understanding the influence of water added upon pre- and post-nucleation

S. Guo, M. Lv, Y. Chen, T. Hou, Y. Zhang, Z. Huang, Y. Cao, M. Rogers and Y. Lan, Food Funct., 2020, 11, 2048 DOI: 10.1039/C9FO02540E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements