Issue 7, 2020

Modulation of gastrointestinal digestion of β-lactoglobulin and micellar casein following binding by (−)-epigallocatechin-3-gallate (EGCG) and green tea flavanols

Abstract

The effect of binding of flavonoids, (−)-epigallocatechin-3-gallate (EGCG) and green tea extract (GTE), to beta-lactoglobulin (β-Lg) and micellar casein (micellar casein isolate, MCI) on protein digestibility was investigated. β-Lg resisted digestion by pepsin, but in the presence of EGCG the digestion of β-Lg was enhanced. Binding of EGCG to β-Lg was identified by nitro blue tetrazolium (NBT) staining and found, by isothermal titration calorimetry, to be an enthalpy-driven exothermic process, with a binding constant of 19 950 L mol−1. Binding promoted a more rapid digestion of β-Lg during simulated upper duodenal digestion. NBT staining indicated a loss of binding of EGCG to β-Lg during combined gastric and distal small intestinal digestion and correlated with the cleavage of β-Lg. However, increased β-Lg heteromer formation and reduced β-Lg monomer digestibility were observed for the β-Lg-GTE complex. MCI was more digestible than β-Lg during pepsin digestion, but reduced digestibility was observed for both MCI-EGCG and MCI-GTE complexes, with loss of binding during intestinal digestion. The free radical scavenging capacity (FRSC) of EGCG remained stable for the β-Lg-EGCG complex throughout the gastric and intestinal phases of digestion, but this was significantly lowered for the MCI-EGCG complex. These results indicated that polyphenols bind to milk proteins modulating the in vitro digestibility and FRSC of β-Lg and MCI as a result of the formation of complexes.

Graphical abstract: Modulation of gastrointestinal digestion of β-lactoglobulin and micellar casein following binding by (−)-epigallocatechin-3-gallate (EGCG) and green tea flavanols

Supplementary files

Article information

Article type
Paper
Submitted
25 Mar 2020
Accepted
01 Jun 2020
First published
02 Jun 2020

Food Funct., 2020,11, 6038-6053

Modulation of gastrointestinal digestion of β-lactoglobulin and micellar casein following binding by (−)-epigallocatechin-3-gallate (EGCG) and green tea flavanols

Ö. Dönmez, B. A. Mogol, V. Gökmen, N. Tang, M. L. Andersen and D. E. W. Chatterton, Food Funct., 2020, 11, 6038 DOI: 10.1039/D0FO00783H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements