Issue 9, 2020

Peptidomic analysis of pilose antler and its inhibitory effect on triple-negative breast cancer at multiple sites

Abstract

Pilose antler (PA) is a traditional Chinese functional food that has been reported to inhibit breast cancer; however, the specific substances that exert this effect and the underlying mechanisms remain unknown. This study aims to identify the specific proteins in PA water-soluble polypeptides (PAWPs) that are involved in cancer inhibition and determine the effects of PAWPs on triple-negative breast cancer in mice. In this study, peptidomic analysis of 105 varieties of polypeptides from PAWPs was carried out using LC-MS, 22 of which had functions that could potentially suppress tumors, including endopeptidase inhibitors, metal ion-binding proteins, angiogenesis inhibitors, intercellular adhesion proteins, and extracellular matrix repair proteins. Furthermore, we showed that intragastric administration of PAWPs into mice inhibited the growth and metastasis of triple-negative 4T1 breast tumors. PAWPs activated the expression of cleaved-caspase3 and increased tumor apoptosis, resulting in the reduction of platelet-endothelial cell adhesion molecule (PECAM-1/CD31) expression and the number of blood vessels, as well as the inhibition of matrix metalloproteinase (MMP) 2 and 9, increasing the ratio of Cadherin-1 (CDH1)/Cadherin-2 (CDH2) and inhibiting epithelial–mesenchymal transition (EMT) in these tumors. Therefore, PAWPs inhibit the progression and metastasis of triple-negative 4T1 breast cancer at multiple key sites in mice and contain various tumor suppressor proteins that are potentially involved in these processes.

Graphical abstract: Peptidomic analysis of pilose antler and its inhibitory effect on triple-negative breast cancer at multiple sites

Article information

Article type
Paper
Submitted
12 Jun 2020
Accepted
05 Aug 2020
First published
07 Aug 2020

Food Funct., 2020,11, 7481-7494

Peptidomic analysis of pilose antler and its inhibitory effect on triple-negative breast cancer at multiple sites

K. Zheng, Q. Li, D. Lin, X. Zong, X. Luo, M. Yang, X. Yue and S. Ma, Food Funct., 2020, 11, 7481 DOI: 10.1039/D0FO01531H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements