Allanite U–Th–Pb geochronology by ion microprobe†
Abstract
Allanite, an epidote group mineral, occurs as a common accessory mineral in igneous, metamorphic rocks and hydrothermal deposits. It contains radioactive elements Th and U, making it a valuable U–Th–Pb geochronometer for various geological processes. Due to the structural and compositional complexity of allanite, in situ dating method is a better choice when the allanite is heterogeneous or has crystallized in multi-stage events. The wide variation of chemical compositions, however, raises the potential for matrix effects and complicates the use of in situ methods for allanite U–Th–Pb chronology. To address this issue, we made a comprehensive investigation on allanite U–Th–Pb chronology using Secondary Ion Mass Spectrometry (SIMS). Five allanite samples (CAP, Daibosatsu, SQ-51, Toba OTT, TARA allanite) with variable elemental compositions and common lead concentrations have been used. Allanites with variations in FeO (from 12.8 to 16.1 wt%) and similar ThO2 contents (around 1–2%) do not show significant matrix effects, as suggested by a previous study. While, obvious changes in calibration parameters (UO2+/U+, ThO2+/Th+) were noticed for allanites with a large range of Th contents (from 300 ppm to 2.0 wt%). By employing power law relationships between Pb+/U+versus UO2+/U+, Pb+/Th+versus ThO2+/Th+ with suitable exponentials, we do not observe obvious matrix effects with ThO2 concentrations variations. This study demonstrates that allanite can be a good geochronometer for multi-stage mineralization of hydrothermal deposits, providing valuable complementary information to zircon and monazite.