Issue 2, 2020

A self-contained and fully integrated fluidic cassette system for multiplex nucleic acid detection of bacteriuria

Abstract

The gold standard for diagnosing infectious diseases is culture-based identification of bacterial pathogens, which is time-consuming and labour-intensive. Current advances in molecular diagnostics and microfluidic technologies have made the rapid detection of bacteria or viruses in clinical specimens possible. However, the need for rapid, sensitive and multiplex detection of pathogens in a “sample-in and answer-out” manner has not been fully satisfied. In this study, a self-contained and fully integrated fluidic cassette and its supporting analyser were constructed for multiplex detection of bacteria to accelerate the diagnosis of urinary tract infections (UTIs). The fully integrated cassette contains all the necessary components and reagents for bacterial analysis. All of the bacterial analysis processes, including bacterial lysis, magnetic silica bead-based DNA extraction, DNA elution and multiplex loop-mediated amplification (LAMP), are automatically conducted in the cassette. This cassette was successfully applied for the detection of four major pathogenic bacteria in UTIs, i.e., Escherichia coli, Proteus mirabilis, Salmonella typhimurium and Staphylococcus aureus. The first three were successfully detected with a limit of detection (LoD) of 1 colony-forming unit (CFU) μL−1 and the last was with a LoD of 10 CFU μL−1 in urine samples, demonstrating that the cassette has similar sensitivity compared to that of the manual protocol, which is lower than that required by UTIs. The turnaround time for this cassette-based sample-to-answer system was approximately 100 minutes, and the detection is sensitive, fully automated, and accurate, demonstrating the potential to be a useful diagnostic tool for UTIs.

Graphical abstract: A self-contained and fully integrated fluidic cassette system for multiplex nucleic acid detection of bacteriuria

Supplementary files

Article information

Article type
Paper
Submitted
06 Oct 2019
Accepted
10 Dec 2019
First published
10 Dec 2019

Lab Chip, 2020,20, 384-393

A self-contained and fully integrated fluidic cassette system for multiplex nucleic acid detection of bacteriuria

N. Li, Y. Lu, J. Cheng and Y. Xu, Lab Chip, 2020, 20, 384 DOI: 10.1039/C9LC00994A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements