Issue 19, 2020

Plasmonic heating-based portable digital PCR system

Abstract

A miniaturized polymerase chain reaction (PCR) system is not only important for medical applications in remote areas of developing countries, but also important for testing at ports of entry during global epidemics, such as the current outbreak of the coronavirus. Although there is a large number of PCR sensor systems available for this purpose, there is still a lack of portable digital PCR (dPCR) heating systems. Here, we first demonstrated a portable plasmonic heating-based dPCR system. The device has total dimensions of 9.7 × 5.6 × 4.1 cm and a total power consumption of 4.5 W, allowing for up to 25 dPCR experiments to be conducted on a single charge of a 20 000 mAh external battery. The dPCR system has a maximum heating rate of 10.7 °C s−1 and maximum cooling rate of 8 °C s−1. Target DNA concentrations in the range from 101 ± 1.4 copies per μL to 260 000 ± 20 000 copies per μL could be detected using a poly(dimethylsiloxane) (PDMS) microwell membrane with 22 080 well arrays (20 μm diameter). Furthermore, the heating system was demonstrated using a mass producible poly(methyl methacrylate) PMMA microwell array with 8100 microwell arrays (80 μm diameter). The PMMA microwell array could detect a concentration from 12 ± 0.7 copies per μL to 25 889 ± 737 copies per μL.

Graphical abstract: Plasmonic heating-based portable digital PCR system

Supplementary files

Article information

Article type
Paper
Submitted
05 Aug 2020
Accepted
17 Aug 2020
First published
18 Aug 2020

Lab Chip, 2020,20, 3560-3568

Plasmonic heating-based portable digital PCR system

C. D. Ahrberg, J. W. Choi, J. M. Lee, K. G. Lee, S. J. Lee, A. Manz and B. G. Chung, Lab Chip, 2020, 20, 3560 DOI: 10.1039/D0LC00788A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements