Issue 1, 2020

Characteristics of nanosilver ink (UTDAg) microdroplets and lines on polyimide during inkjet printing at high stage velocity

Abstract

The performance of printed electronics strongly depends on printing techniques and printing resolution that enhance their electrical and mechanical properties. In this research paper, a Jetlab 4xl was used to control and dispense microdroplets of highly conductive nanosilver ink (UTDAg) on a polyimide substrate. The waveform effect on the droplet generation is characterized by measuring the size and the speed of the drops. The behavior of ejected drops on the substrate is studied by printing lines at different drop spacing and stage velocity. The jetting parameters that drive the piezoelectric actuator were properly determined and two waveforms (bipolar) were created to generate two different droplet characteristics in terms of speed and size. Then, printing on the fly using commands in a script file (called ‘in script’ hereafter) with burst mode (a single burst) was used to print lines with different droplet spacings of 50 μm, 60 μm, 70 μm, 80 μm, 90 μm and 100 μm and stage velocities of 20 mm s−1, 30 mm s−1, 40 mm s−1, and 50 mm s−1. The spreading behavior of the ejected droplets was investigated as well by printing lines with 250 μm spacing at the different stage velocities mentioned above. The physical characteristics of the printed lines were studied by optical microscopy and surface profilometry. Finally, the resistance of the printed line at 100 μm droplet spacing and 50 mm s−1 stage velocity was measured at curing temperatures of 140 °C and 160 °C.

Graphical abstract: Characteristics of nanosilver ink (UTDAg) microdroplets and lines on polyimide during inkjet printing at high stage velocity

Article information

Article type
Paper
Submitted
21 Feb 2020
Accepted
23 Mar 2020
First published
25 Mar 2020
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2020,1, 99-107

Characteristics of nanosilver ink (UTDAg) microdroplets and lines on polyimide during inkjet printing at high stage velocity

A. Hamad, A. Archacki and A. Mian, Mater. Adv., 2020, 1, 99 DOI: 10.1039/D0MA00048E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements