Issue 4, 2020

The Soret effect in dry polymer electrolyte

Abstract

The Soret effect results in a concentration gradient when a mixture is exposed to a temperature gradient. It is a balance between diffusion of mass driven by the temperature gradient (thermal diffusion) and mass diffusion acting to remove the concentration gradient. Thus, the Soret effect is measured at steady state. In this work, the Soret effect was studied in a thermogalvanic cell with lithium metal electrodes and a dry polymer electrolyte composed of poly(ethylene oxide) and lithium bis-trifluoromethanesulfonylimide (LiTFSI). The concentration gradient was determined by measuring the voltage of the thermogalvanic cell. This was examined at several different temperature gradients and with four different salt concentrations. The Soret coefficient was found to be similar to that observed in small-molecule mixtures and electrolytes and significantly less than polymeric systems. An explanation for this unexpected result is proffered. The Soret coefficient was found to be concentration dependent, which requires further investigation. Finally, it was demonstrated that the thermogalvanic cells used to measure the Soret coefficient can also be used to generate power. Thus, polymer electrolytes are potentially of interest for waste heat recovery, and thermal diffusion might be used to improve battery efficiency.

Graphical abstract: The Soret effect in dry polymer electrolyte

Supplementary files

Article information

Article type
Paper
Submitted
17 Oct 2019
Accepted
31 Jan 2020
First published
31 Jan 2020

Mol. Syst. Des. Eng., 2020,5, 856-863

Author version available

The Soret effect in dry polymer electrolyte

J. J. Mentor, R. Torres and D. T. Hallinan, Mol. Syst. Des. Eng., 2020, 5, 856 DOI: 10.1039/C9ME00145J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements