Issue 1, 2020

Interface engineering in transition metal carbides for electrocatalytic hydrogen generation and nitrogen fixation

Abstract

With an increasing energy consumption rate and rising global population, constructing sustainable energy technologies has become one of the major scientific challenges. Therefore, the development of electrocatalytic conversion technologies that can convert renewable resources, such as water and nitrogen, into value-added chemicals or fuels (e.g., hydrogen and ammonia) can be crucial. A number of transition metal carbides (TMCs) have been investigated over the past few years as effective electrocatalysts for various reactions. This is mainly owing to their unique electronic structures, which leads to high electrical conductivity and chemical stability. Moreover, the reactivity of TMC-based electrocatalysts is highly dependent on their surface and interfacial properties. This review focuses on tuning nanostructures and interfaces to enhance the electrocatalytic activity of TMC-based materials for hydrogen production and nitrogen fixation. The mechanisms behind the surface and interface engineering are discussed, including the synergy effects, facet binding energy, active defects, and low-coordinated sites. In particular, studies on activity enhancement through design of the interfacial phase, composition, and structure in TMC-based electrocatalysts are highlighted. The effective tuning strategies might pave the way for future development of highly active TMC-based electrocatalysts for sustainable energy-related conversion.

Graphical abstract: Interface engineering in transition metal carbides for electrocatalytic hydrogen generation and nitrogen fixation

Article information

Article type
Review Article
Submitted
14 Jul 2019
Accepted
17 Sep 2019
First published
17 Sep 2019

Mater. Horiz., 2020,7, 32-53

Interface engineering in transition metal carbides for electrocatalytic hydrogen generation and nitrogen fixation

M. Kuang, W. Huang, C. Hegde, W. Fang, X. Tan, C. Liu, J. Ma and Q. Yan, Mater. Horiz., 2020, 7, 32 DOI: 10.1039/C9MH01094G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements