Issue 3, 2020

High performance bulk photovoltaics in narrow-bandgap centrosymmetric ultrathin films

Abstract

In conventional bulk photovoltaics (BPVs), it is difficult to acquire both intensive photocurrent and large photovoltage output, which greatly limits the practical application. Here, we report a new strategy that can significantly increase photocurrent by five orders of magnitude whilst retaining the nature of high photovoltage of BPVs by introducing the local-chemistry-induced polar nanoregions (PNRs) into narrow-bandgap centrosymmetric ultrathin films. It is believed that these PNRs distribute randomly in non-ferroelectric insulator matrix and contribute to ferroelectric-like polarization when the sample thickness is comparable to the PNRs sizes. This allows to establish an internal field to effectively separate photogenerated electron–hole pairs even in centrosymmetric materials with narrow bandgap, and thus the power conversion efficiency (PCE) will increase significantly. BiVO4 (BVO) hereof is exemplified. Through intergrowing polar Bi4V2O11 nanoregions into the ultra-thin narrow bandgap BVO film, the PCE increases 1000 times compared with that of the BVO ceramic without taking advantage of the PNRs. This new strategy of producing high PV output in narrow-bandgap semiconductor thin films therefore will extend the candidate pool of bulk PV materials beyond traditional ferroelectricity, providing a pathway for practical application of bulk PV effect. Additionally, the combination of ferroelectric-like feature with a narrow bandgap in one material may create new optoelectronic functions.

Graphical abstract: High performance bulk photovoltaics in narrow-bandgap centrosymmetric ultrathin films

Supplementary files

Article information

Article type
Communication
Submitted
01 Nov 2019
Accepted
02 Dec 2019
First published
03 Dec 2019

Mater. Horiz., 2020,7, 898-904

High performance bulk photovoltaics in narrow-bandgap centrosymmetric ultrathin films

H. Mai, T. Lu, Q. Sun, R. G. Elliman, F. Kremer, T. Duong, K. Catchpole, Q. Li, Z. Yi, T. J. Frankcombe and Y. Liu, Mater. Horiz., 2020, 7, 898 DOI: 10.1039/C9MH01744E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements