Issue 8, 2020

Self-stratification of amphiphilic Janus particles at coating surfaces

Abstract

Amphiphilic Janus particles are mixed with homogeneous binder particles with strong adhesion to create robust hydrophobic coatings through a unique self-stratification process. Intriguingly, Janus particles form a complete and densely packed monolayer with their hydrophobic sides orienting towards air, which effectively increases the water contact angle to ∼130°, while the hydrophilic sides sustain strong adhesion with the coating layer. The coating maintains its high contact angle even after solvent rinsing, whereas conventional coating completely breaks down. Experimental data and preliminary theoretical modeling suggest that the stratification are partially due to the strong adsorption of Janus particles at the water–air interface, although the detailed mechanisms require more thorough investigation. Remarkably, simply adding Janus particles renders a hydrophilic commercial primer coating surface hydrophobic and drastically reduces the surface tackiness. This cost-effective and commercially scalable method offers a convenient way to fabricate advanced structures at the interface and can be broadly applicable to many other colloidal systems.

Graphical abstract: Self-stratification of amphiphilic Janus particles at coating surfaces

Supplementary files

Article information

Article type
Communication
Submitted
08 Apr 2020
Accepted
15 Jun 2020
First published
15 Jun 2020
This article is Open Access
Creative Commons BY-NC license

Mater. Horiz., 2020,7, 2047-2055

Self-stratification of amphiphilic Janus particles at coating surfaces

Y. Li, F. Liu, S. Chen, A. Tsyrenova, K. Miller, E. Olson, R. Mort, D. Palm, C. Xiang, X. Yong and S. Jiang, Mater. Horiz., 2020, 7, 2047 DOI: 10.1039/D0MH00589D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements