Issue 1, 2020

Boron nitride aerogels consisting of varied superstructures

Abstract

As a porous material with a nanoscale skeleton, aerogel serves as a bridge between the nano- and macro-world. The integration of nanostructures into aerogels not only allows the combination of multidimensional features but also implies the possibility of unexpected properties. With great potential in many fields, boron nitride (BN) nanostructures have garnered growing attention and their existence in the aerogel state holds even more promise. However, the existing fabrication routes in the aerogel field, despite their validity and effectiveness, provide no panacea and are challenged by those incompatible with the current preparation toolbox, among which BN stands out. Herein, a multilevel assembly scheme is demonstrated for the elegant fabrication of BN aerogels consisting of varied superstructures, i.e., nanoribbons composed of tiny nanocrystals and nest-like structures tangled by nanofibers, the realization of which via the traditional molecular route or the classic assembly route is rather difficult. Interestingly, the resultant aerogels were found to exhibit great contrast in their hydrophilicity, which could be attributed to the microstructure difference. This study may raise the prospects of BN in energy, environment, bio-applications, etc. It may also give inspirations for the incorporation of other complex structures into aerogels.

Graphical abstract: Boron nitride aerogels consisting of varied superstructures

Supplementary files

Article information

Article type
Communication
Submitted
07 Nov 2019
Accepted
16 Dec 2019
First published
16 Dec 2019
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2020,2, 149-155

Boron nitride aerogels consisting of varied superstructures

J. Pan and J. Wang, Nanoscale Adv., 2020, 2, 149 DOI: 10.1039/C9NA00702D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements