Issue 43, 2020

Ruthenium nitrosyl complexes with the molecular framework [RuII(dmdptz)(bpy)(NO)]n+ (dmdptz: N,N-dimethyl-4,6-di(pyridin-2-yl)-1,3,5-triazin-2-amine and bpy: 2,2′-bipyridine). Electronic structure, reactivity aspects, photorelease, and scavenging of NO

Abstract

Two mononuclear ruthenium nitrosyl complexes with a nitrogen-rich ligand coordinated molecular framework, [RuII(dmdptz)(bpy)(NO)]n+ (dmdptz: N,N-dimethyl-4,6-di(pyridin-2-yl)-1,3,5-triazin-2-amine and bpy: 2,2′-bipyridine), Enemark and Feltham notation {RuNO}6, [4]3+ (n = 3), and {RuNO}7, [4]2+ (n = 2), have been synthesized by sequential pathways from a chloro precursor [RuII(dmdptz)(bpy)(Cl)]+ [1]+via an acetonitrile complex [RuII(dmdptz)(bpy)(CH3CN)]2+ [2]2+ and a nitro complex [RuII(dmdptz)(bpy)(NO2)]+ [3]+. Single crystal X-ray structures of [1](ClO4) and [3](ClO4) have been successfully elucidated. A substantial low stretching frequency ν(NO) band of [4]3+ at 1914 cm−1 due to the influence of a pyridyl-substituted s-triazine ligand suggests the moderately electrophilic nature of NO. Density functional theory calculated trans-angles (Ru1–N6–O1) of 176.713° and 141.745° in [4]3+ and [4]2+ indicate linear and bent coordination modes of NO to central ruthenium, respectively. A noticeable shift in ν(NO) (solid) (Δν = 364 cm−1) which has been observed on moving from [4]3+ to [4]2+ is good evidence for NO-centered one-electron reduction with {RuNO}6 to {RuNO}7 bonding alteration. The redox properties of [4]3+ have been studied with precursor complexes. The electrochemical conversion of [4]3+ to [3]+ has been performed in the presence of 0.5 M NaOH solution. Both [4]3+ and [4]2+ facilitate the photocleavage of the Ru–NO bond on exposure to a xenon 200 W visible light source with first-order rate constants kNO of 8.44 × 10−3 min−1 (t1/2 = 82 min) and 4.64 × 10−2 min−1 (t1/2 = 15 min), respectively. Light-triggered release of NO has been captured by a biologically relevant target protein, reduced myoglobin, as an Mb–NO adduct.

Graphical abstract: Ruthenium nitrosyl complexes with the molecular framework [RuII(dmdptz)(bpy)(NO)]n+ (dmdptz: N,N-dimethyl-4,6-di(pyridin-2-yl)-1,3,5-triazin-2-amine and bpy: 2,2′-bipyridine). Electronic structure, reactivity aspects, photorelease, and scavenging of NO

Supplementary files

Article information

Article type
Paper
Submitted
04 Aug 2020
Accepted
10 Oct 2020
First published
12 Oct 2020

New J. Chem., 2020,44, 18732-18744

Ruthenium nitrosyl complexes with the molecular framework [RuII(dmdptz)(bpy)(NO)]n+ (dmdptz: N,N-dimethyl-4,6-di(pyridin-2-yl)-1,3,5-triazin-2-amine and bpy: 2,2′-bipyridine). Electronic structure, reactivity aspects, photorelease, and scavenging of NO

B. Giri, S. Kumbhakar, K. Selvan K, A. Muley and S. Maji, New J. Chem., 2020, 44, 18732 DOI: 10.1039/D0NJ03923C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements