KMnO4-catalyzed chemoselective deprotection of acetate and controllable deacetylation–oxidation in one pot†
Abstract
A novel and efficient protocol for chemoselective deacetylation under ambient conditions was developed using catalytic KMnO4. The stoichiometric use of KMnO4 highlighted the dual role of a heterogeneous oxidant enabling direct access to aromatic aldehydes in one-pot sequential deacetylation–oxidation. The reaction employed an alternative solvent system and allowed the clean transformation of benzyl acetate to sensitive aldehyde in a single step while preventing over-oxidation to acids. Use of inexpensive and readily accessible KMnO4 as an environmentally benign reagent and the ease of the reaction operation were particularly attractive, and enabled the controlled oxidation and facile cleavage of acetate in a preceding step.