From flat to tilted: gradual interfaces in organic thin film growth†
Abstract
We investigate domain formation and local morphology of thin films of α-sexithiophene (α-6T) on Au(100) beyond monolayer coverage by combining high resolution scanning tunneling microscopy (STM) experiments with electronic structure theory calculations and computational structure search. We report a layerwise growth of highly-ordered enantiopure domains. For the second and third layer, we show that the molecular orbitals of individual α-6T molecules can be well resolved by STM, providing access to detailed information on the molecular orientation. We find that already in the second layer the molecules abandon the flat adsorption structure of the monolayer and adopt a tilted conformation. Although the observed tilted arrangement resembles the orientation of α-6T in the bulk, the observed morphology does not yet correspond to a well-defined surface of the α-6T bulk structure. A similar behavior is found for the third layer indicating a growth mechanism where the bulk structure is gradually adopted over several layers.