An artificial sea urchin with hollow spines: improved mechanical and electrochemical stability in high-capacity Li–Ge batteries†
Abstract
Metallic germanium (Ge) as the anode can deliver a high specific capacity and high rate capability in lithium ion batteries. However, the large volume expansion largely restrains its further application. Herein, we constructed a three-dimensional sea urchin structure consisting of double layered Ge/TiO2 nanotubes as the spines via a ZnO template-removing method, which displays a capacity as high as 1060 mA h g−1 over 130 cycles. The robust, hollow oxide backbone serves as a strong support to accommodate the morphological change of Ge while the enhanced electron-transfer kinetics is attributed to the Ge content and the intimate contact between Ge and TiO2 during charging/discharging, which were confirmed using in situ transmission electronic microscopy observations and first-principles simulations. In addition, a high capacity retention of batteries using this hybrid composite as the anode was also achieved at low temperature.