Issue 11, 2020

Thermo- and pH-responsive fibrillization of squid suckerin A1H1 peptide

Abstract

Stimuli-responsive smart materials have attracted considerable attention with numerous applications in nanotechnology, sensing, and biomedicine. Suckerin family proteins found in squid ring teeth represent such a class of peptide-based smart materials with their self-assemblies featuring excellent thermo-plasticity and pH-dependence. Similar to block copolymers, suckerin proteins are comprised of two repeating sequence motifs, where M1 motifs are abundant in alanine and histidine residues and M2 are rich in glycine. Experimental studies of suckerin assemblies suggested that M1 regions mainly formed nano-confined β-sheets within an amorphous matrix made of M2 modules stabilizing these β-rich nano-assemblies. The histidine-containing M1 modules are believed to govern the pH- and temperature-sensitive properties of suckerin assemblies. To better understand the stimuli-responsive properties of suckerin assemblies at the molecular level, we systematically studied the self-assembly dynamics of A1H1 peptides – a representative M1 sequence – at different temperatures and pH conditions with atomistic discrete molecular dynamic simulations. Our simulations with twenty A1H1 peptides demonstrated that below the transition temperature Tagg, they could readily self-assemble from isolated monomers into well-defined β-sheet nanostructures by both primary and secondary nucleation of β-sheets and subsequent aggregation growth via elongation and coagulation. Interestingly, the dissociation of pre-formed A1H1 β-sheet nanostructures featured a melting temperature Tm higher than Tagg, exhibiting the thermal hysteresis that is characteristic of first-order phase transitions with high energy barriers. In acidic environments where all histidine residues were protonated, the stability of the A1H1 β-sheet nano-assemblies was reduced and the β-rich assemblies easily dissociated into unstructured monomers at significantly lower temperatures than in the neutral solution. The computationally derived molecular mechanisms for pH- and temperature-dependent A1H1 self-assembly will help to understand the supramolecular assembly structures and functions of the large suckerin family and aid in the future design of peptide-based stimuli-responsive smart materials.

Graphical abstract: Thermo- and pH-responsive fibrillization of squid suckerin A1H1 peptide

Supplementary files

Article information

Article type
Paper
Submitted
30 Oct 2019
Accepted
10 Feb 2020
First published
11 Feb 2020

Nanoscale, 2020,12, 6307-6317

Author version available

Thermo- and pH-responsive fibrillization of squid suckerin A1H1 peptide

Y. Sun and F. Ding, Nanoscale, 2020, 12, 6307 DOI: 10.1039/C9NR09271D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements