Issue 15, 2020

Unsupervised feature recognition in single-molecule break junction data

Abstract

Single-molecule break junction measurements deliver a huge number of conductance vs. electrode separation traces. During such measurements, the target molecules may bind to the electrodes in different geometries, and the evolution and rupture of the single-molecule junction may also follow distinct trajectories. The unraveling of the various typical trace classes is a prerequisite to the proper physical interpretation of the data. Here we exploit the efficient feature recognition properties of neural networks to automatically find the relevant trace classes. To eliminate the need for manually labeled training data we apply a combined method, which automatically selects training traces according to the extreme values of principal component projections or some auxiliary measured quantities. Then the network captures the features of these characteristic traces and generalizes its inference to the entire dataset. The use of a simple neural network structure also enables a direct insight into the decision-making mechanism. We demonstrate that this combined machine learning method is efficient in the unsupervised recognition of unobvious, but highly relevant trace classes within low and room temperature gold–4,4′ bipyridine–gold single-molecule break junction data.

Graphical abstract: Unsupervised feature recognition in single-molecule break junction data

Article information

Article type
Paper
Submitted
16 Jan 2020
Accepted
12 Mar 2020
First published
25 Mar 2020
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2020,12, 8355-8363

Unsupervised feature recognition in single-molecule break junction data

A. Magyarkuti, N. Balogh, Z. Balogh, L. Venkataraman and A. Halbritter, Nanoscale, 2020, 12, 8355 DOI: 10.1039/D0NR00467G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements