Cellular architecture response to aspect ratio tunable nanoarrays†
Abstract
Nanoarrays have been emerging as popular nanostructure platforms to investigate both cell behaviors and biological functions, due to the cell architecture respondence to the biointerface of nanostructures. Herein, we developed a series of aspect ratio tunable nanoarrays through a metal-assisted chemical etching method. Nanoarrays including nanoneedles, nanopillars, and nanoclusters were fabricated with a controllable aspect ratio. We found that nanostructures with a high aspect ratio (>10) induced significant alterations of cell physiological behaviors such as surface attachment, architecture deformation, viability, proliferation and motility. The cells on nanostructures with a high aspect ratio exhibited reorganized actin stress fibers and vimentin filaments, as well as reduced focal adhesion. This research enlarges the diversity of nanostructures on nano–bio interface investigation, provides a new insight for the surface-dependent architecture of cells, and offers unbiased understanding of factors influencing cell physiology.