Issue 25, 2020

A RAGE-antagonist peptide potentiates polymeric micelle-mediated intracellular delivery of plasmid DNA for acute lung injury gene therapy

Abstract

Acute lung injury (ALI) is a severe inflammatory lung disease. A high mobility group box-1 (HMGB-1) derived RAGE-antagonist peptide (RAP) was previously developed for anti-inflammatory therapy for ALI. Due to its specific binding to RAGE on the surface of inflammatory cells, the RAP may facilitate polymer-mediated intracellular delivery of plasmid DNA (pDNA) into the inflammatory cells. To evaluate this hypothesis, a pDNA/polymer/RAP ternary-complex was produced and applied for ALI gene therapy. Dexamethasone-conjugated polyamidoamine G2 (PAM-D) was used as a gene carrier, and the adiponectin (APN) gene was employed as a therapeutic gene. First, the ratio of pDNA to PAM-D was optimized in terms of anti-inflammation and low toxicity. Then, the RAP was added to the pDNA/PAM-D complex, producing the pDNA/PAM-D/RAP complex. The transfection efficiency of the luciferase plasmid (pLuc)/PAM-D/RAP reached its maximum at a weight ratio of 1 : 2 : 9. At this weight ratio, pLuc/PAM-D/RAP had a higher transfection efficiency than pLuc/PAM-D or pLuc/RAP. The transfection efficiency of pLuc/PAM-D/RAP decreased due to competition with free RAPs, suggesting the RAGE-mediated endocytosis of the complex. In the LPS-activated ALI mouse models, intratracheal administration of APN plasmid (pAPN)/PAM-D/RAP induced higher APN expression and less pro-inflammatory cytokines in the lungs of ALI animal models than pAPN/PEI25k, pAPN/RAP, and pAPN/PAM-D. Hematoxylin and eosin staining confirmed the higher anti-inflammatory effect of pAPN/PAM-D/RAP than the other complexes in the ALI models. Therefore, RAP-mediated enhanced delivery of pAPN/PAM-D may be useful for the development of a treatment for ALI.

Graphical abstract: A RAGE-antagonist peptide potentiates polymeric micelle-mediated intracellular delivery of plasmid DNA for acute lung injury gene therapy

Supplementary files

Article information

Article type
Paper
Submitted
18 Feb 2020
Accepted
28 May 2020
First published
01 Jun 2020

Nanoscale, 2020,12, 13606-13617

A RAGE-antagonist peptide potentiates polymeric micelle-mediated intracellular delivery of plasmid DNA for acute lung injury gene therapy

C. Piao, C. Zhuang, M. Choi, J. Ha and M. Lee, Nanoscale, 2020, 12, 13606 DOI: 10.1039/D0NR01367F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements