DFT coupled with NEGF study of the electronic properties and ballistic transport performances of 2D SbSiTe3†
Abstract
Identifying novel 2D semiconductors with promising electronic properties and transport performances for the development of electronic and optoelectronic applications is of utmost importance. Here, we show a detailed study of the electronic properties and ballistic quantum transport performance of a new 2D semiconductor, SbSiTe3, based on density functional theory (DFT) and non-equilibrium Green's function (NEGF) formalism. Promisingly, monolayer SbSiTe3 owns an indirect band gap of 1.61 eV with a light electron effective mass (0.13m0) and an anisotropic hole effective mass (0.49m0 and 1.34m0). The ballistic performance simulations indicate that the 10 nm monolayer SbSiTe3 n- and p-MOSFETs display a steep subthreshold swing of about 80 mV dec−1 and a high on/off ratio (106), which indicate a good gate-controlling capability. As the channel length of SbSiTe3 decreases to 5 nm, its p-MOSFET also effectively suppresses the intra-band tunneling. Therefore, 2D SbSiTe3 is a potential semiconductor for future nanoelectronics.