Nanofabrication within unimolecular nanoreactors
Abstract
Nanoparticles (NPs) have been a research focus over the last three decades owing to their unique properties and extensive applications. It is crucial to precisely control the features of NPs including topology, architecture, composition, size, surface and assembly because these features will affect their properties and then applications. Ingenious nanofabrication strategies have been developed to precisely control these features of NPs, especially for templated nanofabrication within predesigned nanoreactors. Compared with conventional nanoreactors (hard templates and supramolecular nanoreactors), unimolecular nanoreactors exhibit (1) covalently stable nanostructures uninfluenced by environmental variations, (2) extensively regulated features of the structure including topology, composition, size, surface and valence due to the rapid development of polymer chemistry, and (3) effective encapsulation of abundant guests with or without strong interaction to achieve the function of loading, delivery and conversion of guests. Thus, unimolecular nanoreactors have shown fascinating prospects as templates for nanofabrication. Various NPs with expected topologies (sphere, rod, tube, branch, and ring), architectures (compact, hollow, core–shell, and necklace-like), compositions (metal, metal oxide, semiconductor, doping, alloy, silica, and composite), sizes (generally 1–100 nm), surface properties (hydrophilic, hydrophobic, reactivity, valence and responsivity) and assemblies (oligomer, chain, and aggregate) can be fabricated easily within reasonably designed unimolecular nanoreactors in a programmable way. In this review, we provide a brief introduction of the properties and types of unimolecular nanoreactors, a condensed summary of representative methodologies of nanofabrication within various unimolecular nanoreactors and a predicted outlook of the potential further developments of this charming nanofabrication approach.
- This article is part of the themed collection: Recent Review Articles