Issue 30, 2020

Ultrathin Bi2O2S nanosheet near-infrared photodetectors

Abstract

Recently, a zipper two-dimensional (2D) material Bi2O2Se belonging to the layered bismuth oxychalcogenide (Bi2O2X: X = S, Se, Te) family, has emerged as an alternate candidate to van der Waals 2D materials for high-performance electronic and optoelectronic applications. This hints towards exploring the other members of the Bi2O2X family for their true potential and bismuth oxysulfide (Bi2O2S) could be the next member for such applications. Here, we demonstrate for the first time, the scalable room-temperature chemical synthesis and near-infrared (NIR) photodetection of ultrathin Bi2O2S nanosheets. The thickness of the freestanding nanosheets was around 2–3 nm with a lateral dimension of ∼80–100 nm. A solution-processed NIR photodetector was fabricated from ultrathin Bi2O2S nanosheets. The photodetector showed high performance, under 785 nm laser illumination, with a photoresponsivity of 4 A W−1, an external quantum efficiency of 630%, and a normalized photocurrent-to-dark-current ratio of 1.3 × 1010 per watt with a fast response time of 100 ms. Taken together, the findings suggest that Bi2O2S nanosheets could be a promising alternative 2D material for next-generation large-area flexible electronic and optoelectronic devices.

Graphical abstract: Ultrathin Bi2O2S nanosheet near-infrared photodetectors

Supplementary files

Article information

Article type
Paper
Submitted
15 Apr 2020
Accepted
07 Jul 2020
First published
07 Jul 2020

Nanoscale, 2020,12, 16285-16291

Author version available

Ultrathin Bi2O2S nanosheet near-infrared photodetectors

B. Chitara, T. B. Limbu, J. D. Orlando, Y. Tang and F. Yan, Nanoscale, 2020, 12, 16285 DOI: 10.1039/D0NR02991B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements