Programming properties of transient hydrogels by an enzymatic reaction†
Abstract
Supramolecular gels are usually stable in time as they are formed under thermodynamic equilibrium or at least in a deep well of a kinetically trapped state. However, artificial construction of kinetically controlled transient supramolecular gels is an interesting challenge. In these systems, usually a kinetically trapped transient aggregate is formed by active building blocks that leads to gelation; the gel then typically returns to the solution state. In this work, we show that such transient aggregation can occur by successive formation of two distinctly different kinetically controlled metastable states. Control over the first metastable state allows us to achieve significant control over the stability and properties of the second metastable state.