Issue 39, 2020

One-dimensional CdS@Cd0.5Zn0.5S@ZnS-Ni(OH)2 nano-hybrids with epitaxial heterointerfaces and spatially separated photo-redox sites enabling highly-efficient visible-light-driven H2 evolution

Abstract

Photocatalytic solar-to-fuel conversion has been of great interest in recent years. Nevertheless, the rational structural manipulation of photocatalysts toward an efficient H2 evolution reaction (HER) is still under-developed. In this work, by employing CdS nanowires as the growth substrate, unique one-dimensional (1D) CdS@Cd0.5Zn0.5S@ZnS-Ni(OH)2 heterostructures were first synthesized through the ultrasonic water-bath reaction combined with subsequent hydrothermal and in situ photo-deposition processes. Under the optimized conditions, CS@30CZ0.5S@40ZS-3N with 30 wt% Cd0.5Zn0.5S, 40 wt% ZnS, and 3 wt% Ni(OH)2 achieves a visible-light-driven HER activity as high as 86.79 mmol h−1 g−1 (corresponding to an apparent quantum yield of 22.8% at 420 nm), which is 4 and 119 times higher than that of Pt-decorated CS@30CZ0.5S@40ZS and CdS, respectively. In addition, CdS@Cd0.5Zn0.5S@ZnS-Ni(OH)2 is also endowed with a good stability for H2 production under long-term irradiation. The spatial separation of photo-redox sites and epitaxial heterointerfaces in CdS@Cd0.5Zn0.5S@ZnS-Ni(OH)2 nanowires facilitate the charge transfer and separation effectively, accounting well for their superior photocatalytic capability. The results indicated in this work could benefit the exploitation of high-performance nanostructures for promising photocatalytic applications.

Graphical abstract: One-dimensional CdS@Cd0.5Zn0.5S@ZnS-Ni(OH)2 nano-hybrids with epitaxial heterointerfaces and spatially separated photo-redox sites enabling highly-efficient visible-light-driven H2 evolution

Supplementary files

Article information

Article type
Paper
Submitted
25 May 2020
Accepted
08 Sep 2020
First published
08 Sep 2020

Nanoscale, 2020,12, 20522-20535

One-dimensional CdS@Cd0.5Zn0.5S@ZnS-Ni(OH)2 nano-hybrids with epitaxial heterointerfaces and spatially separated photo-redox sites enabling highly-efficient visible-light-driven H2 evolution

Q. Ruan, X. Ma, Y. Li, J. Wu, Z. Wang, Y. Geng, W. Wang, H. Lin and L. Wang, Nanoscale, 2020, 12, 20522 DOI: 10.1039/D0NR04007J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements