Issue 46, 2020

Tuning exciton diffusion, mobility and emission line width in CdSe nanoplatelets via lateral size

Abstract

We investigate the lateral size tunability of the exciton diffusion coefficient and mobility in colloidal quantum wells by means of line width analysis and theoretical modeling. We show that the exciton diffusion coefficient and mobility in laterally finite 2D systems like CdSe nanoplatelets can be tuned via the lateral size and aspect ratio. The coupling to acoustic and optical phonons can be altered via the lateral size and aspect ratio of the platelets. Subsequently the exciton diffusion and mobility become tunable since these phonon scattering processes determine and limit the mobility. At 4 K the exciton mobility increases from ∼ 4 × 103 cm2 V−1 s−1 to more than 1.4 × 104 cm2 V−1 s−1 for large platelets, while there are weaker changes with size and the mobility is around 8 × 101 cm2 V−1 s−1 for large platelets at room temperature. In turn at 4 K the exciton diffusion coefficient increases with the lateral size from ∼ 1.3 cm2 s−1 to ∼ 5 cm2 s−1, while it is around half the value for large platelets at room temperature. Our experimental results are in good agreement with theoretical modeling, showing a lateral size and aspect ratio dependence. The findings open up the possibility for materials with tunable exciton mobility, diffusion or emission line width, but quasi constant transition energy. High exciton mobility is desirable e.g. for solar cells and allows efficient excitation harvesting and extraction.

Graphical abstract: Tuning exciton diffusion, mobility and emission line width in CdSe nanoplatelets via lateral size

Supplementary files

Article information

Article type
Communication
Submitted
23 Jun 2020
Accepted
02 Nov 2020
First published
02 Nov 2020
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2020,12, 23521-23531

Tuning exciton diffusion, mobility and emission line width in CdSe nanoplatelets via lateral size

A. W. Achtstein, S. Ayari, S. Helmrich, M. T. Quick, N. Owschimikow, S. Jaziri and U. Woggon, Nanoscale, 2020, 12, 23521 DOI: 10.1039/D0NR04745G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements