Interface engineering of Ag-Ni3S2 heterostructures toward efficient alkaline hydrogen evolution†
Abstract
Exploring Earth-abundant transition-metal-based electrocatalysts with high performance toward the alkaline hydrogen evolution reaction (HER) is crucial for sustainable hydrogen production. Ni3S2 has been recently identified as a promising HER catalyst, but it has unfavorable water dissociation and hydrogen adsorption characteristics. Here, we report Ag-decorated Ni3S2 nanosheet arrays grown on Ni Foam (NF) (Ag-Ni3S2/NF) as efficient heterostructure electrocatalysts for the HER in alkaline media. The catalyst only requires a low overpotential of 89 mV at 10 mA cm−2, as well as sustaining long-term durability for 15 h. The experimental analysis, in combination with density functional theory calculation, demonstrates that the electronic coupling at the interface between Ni3S2 and Ag results in enhanced electronic conductivity and optimized hydrogen adsorption and water adsorption/dissociation free energies. This work not only develops a highly efficient catalyst toward the HER, but also sheds light on the structure–activity relationship of the heterostructure catalyst on an atomic scale.