CuS nanoparticles in humid environments: adsorbed water enhances the transformation of CuS to CuSO4
Abstract
Covellite copper sulfide nanoparticles (CuS NPs) have attracted immense research interest due to their widespread use in a range of biological and energy applications. As such, it is crucial to understand the transformations of these nanomaterials and how these transformations influence the behavior of these nanoparticles in environmental and biological systems. This study specifically focuses on understanding the role of water vapor and adsorbed water in the transformation of CuS NP surfaces to CuSO4 in humid environments. Surface sulfide ions are oxidized to sulfate by oxygen in the presence of water vapor, as detected by atomic force microscopy based photothermal infrared spectroscopy (AFM-PTIR) and in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. These results show that the transformation of CuS to CuSO4 is highly dependent on relative humidity (RH). While sulfide to sulfate conversion is not observed to a great extent at low RH (<20%), there is significant conversion at higher RH (>80%). X-ray photoelectron spectroscopy (XPS) analysis confirms that sulfide is irreversibly oxidized to sulfate. Furthermore, it shows that initially, the Cu ions possess the original oxidation state similar to the original covellite, i.e. Cu+, but they are oxidized to Cu2+ at higher RH. The formation of CuSO4 has also been confirmed by HRTEM. These analyses show that adsorbed water on the NP surfaces enhances the conversion of sulfide to sulfate and the oxidation of Cu+ to Cu2+ in the presence of molecular oxygen.