Issue 44, 2020

Adsorption of proteins on oral Zn2+ doped iron oxide nanoparticles in mouse stomach and in vitro: triggering nanoparticle aggregation

Abstract

Oral route is one of the most important portals of nanoparticle entry to the body. However, in vivo protein corona formed in the gastrointestinal tract has not been studied owing to the difficulty for the recovery of nanoparticles from the in vivo environment. In this study, by using the magnetic property of iron oxide nanoparticles (Fe3O4 NPs) and Zn2+ doped iron oxide nanoparticles (Zn0.4Fe2.6O4 NPs), the nanoparticles were separated from the gastric fluid after oral administration in mice. The effects of Zn2+ doping and static magnetic field (SMF) treatment on the protein adsorption on the nanoparticles were investigated in vitro and in vivo. Zn2+ doping decreases the adsorption of pepsin on the nanoparticles in vitro and affects the composition of the protein corona in vivo and enhances protein adsorption-induced aggregation of the nanoparticles in vitro and in vivo. SMF treatment affects the composition of the protein corona of Fe3O4 NPs and Zn0.4Fe2.6O4 NPs, and enhances the aggregation of Fe3O4 NPs and Zn0.4Fe2.6O4 NPs in vivo. Furthermore, the results demonstrate that electrostatic attraction is the crucial force to drive adsorption of proteins on Fe3O4 NPs and Zn0.4Fe2.6O4 NPs and protein adsorption-induced change in the surface charge of nanoparticles plays an important role in the pH-dependent aggregation of the nanoparticles. In addition, the work provides the evidence that the protein adsorption-induced aggregation of Fe3O4 NPs and Zn0.4Fe2.6O4 NPs has no effect on their magnetic susceptibility. The results highlight that Zn0.4Fe2.6O4 NPs may be used as a potential oral magnetic resonance imaging contrast agent in diagnosis of gastrointestinal disease.

Graphical abstract: Adsorption of proteins on oral Zn2+ doped iron oxide nanoparticles in mouse stomach and in vitro: triggering nanoparticle aggregation

Article information

Article type
Paper
Submitted
01 Sep 2020
Accepted
27 Oct 2020
First published
04 Nov 2020

Nanoscale, 2020,12, 22754-22767

Adsorption of proteins on oral Zn2+ doped iron oxide nanoparticles in mouse stomach and in vitro: triggering nanoparticle aggregation

X. Wang, J. Gong, W. Tan, T. Hu, R. Rong, Z. Gui, K. Nie and X. Xu, Nanoscale, 2020, 12, 22754 DOI: 10.1039/D0NR06315K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements