Issue 2, 2020

2-Substituted 2′-deoxyinosine 5′-triphosphates as substrates for polymerase synthesis of minor-groove-modified DNA and effects on restriction endonuclease cleavage

Abstract

Five 2-substituted 2′-deoxyinosine triphosphates (dRITP) were synthesized and tested as substrates in enzymatic synthesis of minor-groove base-modified DNA. Only 2-methyl and 2-vinyl derivatives proved to be good substrates for Therminator DNA polymerase, whilst all other dRITPs and other tested DNA polymerases did not give full length products in primer extension. The DNA containing 2-vinylhypoxanthine was then further modified through thiol–ene reactions with thiols. Cross-linking reaction between cysteine-containing minor-groove binding dodecapeptide and DNA proceeded thanks to the proximity effect between thiol and vinyl groups inside the minor groove. 2-Substituted dIRTPs and also previously prepared 2-substituted 2′-deoxyadenosine triphosphates (dRATP) were then used for enzymatic synthesis of minor-groove modified DNA to study the effect of minor-groove modifications on cleavage of DNA by type II restriction endonucleases (REs). Although the REs should recognize the sequence through H-bonds in the major groove, some minor-groove modifications also had an inhibiting effect on the cleavage.

Graphical abstract: 2-Substituted 2′-deoxyinosine 5′-triphosphates as substrates for polymerase synthesis of minor-groove-modified DNA and effects on restriction endonuclease cleavage

Supplementary files

Article information

Article type
Paper
Submitted
20 Nov 2019
Accepted
03 Dec 2019
First published
03 Dec 2019

Org. Biomol. Chem., 2020,18, 255-262

2-Substituted 2′-deoxyinosine 5′-triphosphates as substrates for polymerase synthesis of minor-groove-modified DNA and effects on restriction endonuclease cleavage

J. Matyašovský and M. Hocek, Org. Biomol. Chem., 2020, 18, 255 DOI: 10.1039/C9OB02502B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements