Issue 15, 2020

Engineering a bacterial sialyltransferase for di-sialylation of a therapeutic antibody

Abstract

Terminal α-2,6-sialylation of N-glycans is a humanized glycosylation that affects the properties and efficacy of therapeutic glycoproteins. Fc di-sialylation (a biantennary N-glycan with two α-2,6-linked sialic acids) of IgG antibodies imparts them with enhanced anti-inflammatory activity and other roles. However, the microheterogeneity of N-glycoforms presents a challenge for therapeutic development. Therefore, controlled sialylation has drawn considerable attention, but direct access to well-defined di-sialylated antibodies remains limited. Herein, a one-pot three-enzyme protocol was developed by engineering a bacterial sialyltransferase to facilitate the modification of therapeutic antibodies with N-acetylneuraminic acid or its derivatives towards optimized glycosylation. To overcome the low proficiency of bacterial sialyltransferase in antibody remodeling, the Photobacterium sp. JT-ISH-224 α-2,6-sialyltransferase (Psp2,6ST) was genetically engineered by terminal truncation and site-directed mutagenesis based on its protein crystal structure. With the optimized reaction conditions and using activity-based screening of various Psp2,6ST variants, a truncated mutant Psp2,6ST (111–511)-His6 A235M/A366G was shown to effectively improve the catalytic efficiency of antibody di-sialylation. Herceptin and the donor substrate promiscuity allow the introduction of bioorthogonal modifications of N-acetylneuraminic acid into antibodies for site-specific conjugation. 2-AB hydrophilic interaction chromatography analysis of the released N-glycans and intact mass characterization confirmed the high di-sialylation of Herceptin via the optimized one-pot three-enzyme reaction. This study established a versatile enzymatic approach for producing highly di-sialylated IgG antibodies. It provides new insights into engineering bacterial sialyltransferase for adaptation to the enzymatic glycoengineering of therapeutic antibodies and the glycosite-specific conjugation of antibodies.

Graphical abstract: Engineering a bacterial sialyltransferase for di-sialylation of a therapeutic antibody

Supplementary files

Article information

Article type
Paper
Submitted
07 Feb 2020
Accepted
19 Mar 2020
First published
20 Mar 2020

Org. Biomol. Chem., 2020,18, 2886-2892

Engineering a bacterial sialyltransferase for di-sialylation of a therapeutic antibody

M. Wang, Y. Wang, K. Liu, X. Dou, Z. Liu, L. Zhang and X. Ye, Org. Biomol. Chem., 2020, 18, 2886 DOI: 10.1039/D0OB00276C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements