Engineering a bacterial sialyltransferase for di-sialylation of a therapeutic antibody†
Abstract
Terminal α-2,6-sialylation of N-glycans is a humanized glycosylation that affects the properties and efficacy of therapeutic glycoproteins. Fc di-sialylation (a biantennary N-glycan with two α-2,6-linked sialic acids) of IgG antibodies imparts them with enhanced anti-inflammatory activity and other roles. However, the microheterogeneity of N-glycoforms presents a challenge for therapeutic development. Therefore, controlled sialylation has drawn considerable attention, but direct access to well-defined di-sialylated antibodies remains limited. Herein, a one-pot three-enzyme protocol was developed by engineering a bacterial sialyltransferase to facilitate the modification of therapeutic antibodies with N-acetylneuraminic acid or its derivatives towards optimized glycosylation. To overcome the low proficiency of bacterial sialyltransferase in antibody remodeling, the Photobacterium sp. JT-ISH-224 α-2,6-sialyltransferase (Psp2,6ST) was genetically engineered by terminal truncation and site-directed mutagenesis based on its protein crystal structure. With the optimized reaction conditions and using activity-based screening of various Psp2,6ST variants, a truncated mutant Psp2,6ST (111–511)-His6 A235M/A366G was shown to effectively improve the catalytic efficiency of antibody di-sialylation. Herceptin and the donor substrate promiscuity allow the introduction of bioorthogonal modifications of N-acetylneuraminic acid into antibodies for site-specific conjugation. 2-AB hydrophilic interaction chromatography analysis of the released N-glycans and intact mass characterization confirmed the high di-sialylation of Herceptin via the optimized one-pot three-enzyme reaction. This study established a versatile enzymatic approach for producing highly di-sialylated IgG antibodies. It provides new insights into engineering bacterial sialyltransferase for adaptation to the enzymatic glycoengineering of therapeutic antibodies and the glycosite-specific conjugation of antibodies.
- This article is part of the themed collection: Chemical Biology in OBC