Issue 22, 2020

Minimizing solvent waste in catalytic reactions in highly recyclable hydrocarbon solvents

Abstract

This paper describes chemistry using organocatalysts in hydrocarbon solvents that minimizes solvent waste by using inexpensive, non-volatile, relatively inflammable, and easily recyclable poly(α-olefin)s (PAOs) as hydrocarbon solvents. These studies show that when substrates have limited solubility in PAO solvents, this issue can be addressed by adding a small amount of a cosolvent. Kinetic studies were also carried out and show that reactions carried out in PAOs are kinetically comparable to reactions in conventional non-recyclable hydrocarbon solvents. A range of strategies that separate and isolate products from reactions in PAOs using a polyisobutylene (PIB)-supported DMAP catalyst have been studied using four different catalytic reactions. In the most general procedure, the PAO phase containing a PIB-bound catalyst is separated from products by low energy liquid/liquid gravity separation. This can be accomplished using a minimal amount of a polar solvent. In another example, the product's low solubility leads to it precipitating during the reaction. In this case, a simple filtration recycles the PAO and a PIB-bound DMAP catalyst. We have demonstrated that the PAO phase containing a PIB bound DMAP catalyst can be recycled for at least 10 cycles without loss of activity. Our studies further showed that leaching of the PAO phase into polar solvents was orders of magnitude less than conventional hydrocarbon solvents such as heptane. The result is that the overall solvent waste generation is lower than for the same reaction carried out in conventional solvents.

Graphical abstract: Minimizing solvent waste in catalytic reactions in highly recyclable hydrocarbon solvents

Supplementary files

Article information

Article type
Paper
Submitted
08 Apr 2020
Accepted
14 May 2020
First published
18 May 2020

Org. Biomol. Chem., 2020,18, 4248-4256

Minimizing solvent waste in catalytic reactions in highly recyclable hydrocarbon solvents

S. Thavornpradit, J. M. Killough and D. E. Bergbreiter, Org. Biomol. Chem., 2020, 18, 4248 DOI: 10.1039/D0OB00734J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements