Issue 43, 2020

Rational molecular design of anion exchange membranes functionalized with alicyclic quaternary ammonium cations

Abstract

High alkaline stability is critical for polymeric anion exchange membranes (AEMs) and ionomers for use in alkaline electrochemical energy conversion and storage devices such as fuel cells, electrolyzer cells and advanced batteries. Here, we have prepared and studied ether-free polyfluorenes tethered with N,N-dimethylpiperidinium (DMP) and 6-azonia-spiro[5.5]undecane (ASU) cations, respectively, attached through heteroatom-free alkyl spacers. By employing alkyl–alkyl Suzuki cross-coupling, these alicyclic quaternary ammonium cations are attached at the 4-position to impede ionic loss. Thus, all the β-hydrogens sensitive to elimination reactions are placed in strain-free rings able to fully relax by the spacer flexibility. Consequently, the AEM carrying DMP cations shows a very high alkaline and thermal stability, retaining more than 91% of the cations after 2400 h immersion in 2 M NaOH at 90 °C. Compared with corresponding AEM functionalized with N-alkyl-N-methylpiperidinium (AMP) cations [conventionally tethered via the 1(N)-position], the ionic loss by β-elimination is successfully reduced by up to 92%. The AEM functionalized with DMP also reaches a high hydroxide conductivity of 124 mS cm−1 at 80 °C. Consequently, tethering piperidine-based cations via the 4-position instead of the 1(N)-position results in AEMs with substantially improved thermal and alkaline stability, combined with high hydroxide conductivity.

Graphical abstract: Rational molecular design of anion exchange membranes functionalized with alicyclic quaternary ammonium cations

Article information

Article type
Paper
Submitted
09 Sep 2020
Accepted
18 Oct 2020
First published
19 Oct 2020
This article is Open Access
Creative Commons BY-NC license

Polym. Chem., 2020,11, 6953-6963

Rational molecular design of anion exchange membranes functionalized with alicyclic quaternary ammonium cations

T. H. Pham, A. Allushi, J. S. Olsson and P. Jannasch, Polym. Chem., 2020, 11, 6953 DOI: 10.1039/D0PY01291B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements