Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

In view of the large-scale production of hydrogen (H2) by means of water electrolysis, it is of utmost importance to develop high-efficiency, stable and low-cost electrocatalysts. We report here on the synthesis and electrocatalytic properties of interconnected porous nanoflakes of the bimetallic catalyst CoMo2S4. These as-grown CoMo2S4 electrodes show higher electrocatalytic ability as compared to the reference CoMoO6 material, requiring a low OER/HER overpotential of 306/162 mV to reach 10 mA cm−2. We ascribe the excellent catalytic efficiency of our novel nanostructured CoMo2S4 catalyst to the combination of an increased number of active sites, enhanced charge transport properties, and a better contact at the CoMo2S4/electrolyte interface. When interconnected CoMo2S4 is used as a bifunctional catalyst in two-electrode electrolyzer cells, it maintains a voltage of 1.65 V to achieve 10 mA cm−2 for at least 10 hours, thus opening a new route for the design of efficient, stable and low-cost catalysts.

Graphical abstract: Interconnected porous nanoflakes of CoMo2S4 as an efficient bifunctional electrocatalyst for overall water electrolysis

Page: ^ Top