A porcine acellular dermal matrix induces human fibroblasts to secrete hyaluronic acid by activating JAK2/STAT3 signalling†
Abstract
Human facial skin undergoes continuous ageing over a lifespan. At present, facial skin rejuvenation is mainly achieved by injecting filling materials. However, conventional materials lack long-term beneficial effects and can only rejuvenate the skin temporarily by physical filling. To overcome this shortcoming, this study developed a porcine acellular dermal matrix with a porous three-dimensional scaffold structure and containing natural growth factors (3D-GF-PADM). The average size of the 3D-GF-PADM particles was 33.415 μm, and the dynamic viscosity and elastic modulus were within ranges suitable for clinical applications. Our study revealed that the 3D-GF-PADM exhibited an extremely low α-gal epitope number (3.15 ± 0.84 × 1011/mg) and DNA content, and no immunotoxicity, but contained abundant TGF-β1, VEGF and other growth factors. More importantly, this 3D-GF-PADM actively induced the synthesis of hyaluronic acid by fibroblasts of the host skin. Study at the molecular level further demonstrated that the 3D-GF-PADM activated the JAK2/STAT3 pathway, resulting in the upregulation of HAS2 expression, which led to an increase in hyaluronic acid synthesis. Our study developed a novel 3D-GF-PADM that can actively induce hyaluronic acid synthesis, which may be used clinically as a skin filling material to achieve long-term skin rejuvenation.