Issue 5, 2020, Issue in Progress

MnOx dispersed on attapulgite derived Al-SBA-15: a promising catalyst for volatile organic compound combustion

Abstract

To improve the catalytic activity when utilizing metal oxides for the combustion of VOCs, Mn/Al-SBA-15 catalysts have been successfully synthesized through an emerging wetness impregnation technique involving Mn(NO3)2 on Al-SBA-15, which has been directly prepared from attapulgite by a hydrothermal method. Compared to Mn/SBA-15, which is prepared with TEOS as its silicon source, all the as-prepared Mn/Al-SBA-15 catalysts demonstrated enhanced catalytic performance in the oxidation of toluene. From this research, the 8% Mn/Al-SBA-15 catalyst presented the best catalytic performance, due to the high efficiency resulting from the high chemical valence of Mn4+. When the concentration of toluene was 2000 ppm, and the space velocity was 60 000 mL (g h)−1, 8% Mn/Al-SBA-15 could effectively reduce the T50 and T90 values of toluene to 201 and 278 °C, respectively; while the 8% Mn/SBA-15 catalyst could reduce the T50 and T90 values of toluene to 223 and 298 °C, respectively. A systematic investigation has been conducted to reveal the synergistic effects of Al doping and manganese loading on the enhanced catalytic performance. The experiments showed impressive results, demonstrating that Al doping can not only increase the surface acidity of SBA-15, but it can also be beneficial for achieving a uniform dispersion of MnOx on the surface and in the pores of Al-SBA-15, resulting in the enhancement of the catalytic performance.

Graphical abstract: MnOx dispersed on attapulgite derived Al-SBA-15: a promising catalyst for volatile organic compound combustion

Supplementary files

Article information

Article type
Paper
Submitted
08 Oct 2019
Accepted
13 Dec 2019
First published
14 Jan 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 2472-2482

MnOx dispersed on attapulgite derived Al-SBA-15: a promising catalyst for volatile organic compound combustion

J. Meng, F. Fang, N. Feng, H. Wan and G. Guan, RSC Adv., 2020, 10, 2472 DOI: 10.1039/C9RA08157G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements