Issue 6, 2020, Issue in Progress

Enhancement of sludge electro-dewaterability during biological conditioning

Abstract

Electro-dewatering (EDW) is considered as one of the most promising dewatering technologies due to saving power consumption. In this study, the potential effects of anaerobic biological conditioning (BC) on sludge EDW treatments was investigated. The results showed that without any additives BC pretreatment of sludge enhanced EDW dewaterability and energy efficiency. At 35 °C BC for 3 days, the dry solids (DS) of sludge dewaterability limit could increase up to 49%, which corresponded to an increase of 13% of DS in dewatered sludge cake without BC pretreatment, and the dewatering time was shortened by 22%. There was an economic advantage saving in energy consumption of around 49.5% in the case of BC-EDW when the DS of sludge was up to 38%. Then, the mechanism of BC to improve EDW performance was studied. The principal component regression (PCR) analysis showed that the DS content of dewaterability limit mainly depended on the degradation of organic matter and the change of conductivity in sludge. Fourier transform infrared spectroscopy (FTIR), zeta potential and bound water in sludge were also determined in an attempt to explain the observed changes in sludge BC-EDW. It was indicated that the increase of negatively charged hydroxyl groups on the surface of sludge particles resulted in an increase of the absolute value of the zeta potential and significantly promoted EDW. The tightly bound EPS (TB-EPS) decreased and it loosened the bond between water or metal cations and sludge particles, and the bound water was also found to be released into free water in sludge during BC.

Graphical abstract: Enhancement of sludge electro-dewaterability during biological conditioning

Supplementary files

Article information

Article type
Paper
Submitted
04 Nov 2019
Accepted
31 Dec 2019
First published
17 Jan 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 3153-3165

Enhancement of sludge electro-dewaterability during biological conditioning

Y. Li, Y. Liu, X. Yu, Q. Li, R. Zhang and S. Zhang, RSC Adv., 2020, 10, 3153 DOI: 10.1039/C9RA09126B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements