Issue 6, 2020, Issue in Progress

Comparative study of Ni(ii) adsorption by pristine and oxidized multi-walled N-doped carbon nanotubes

Abstract

The principles and mechanisms of adsorption of Ni(II) ions by well characterized pristine and oxidized N-doped multi-walled carbon nanotubes (N-CNTs) are described and discussed. The samples were synthesized by CCVD method using n-butylamine as the carbon source and Ni(NO3)2 + MgO as the catalyst and purified by treatment with HCl. The surface functionalization was performed using oxidation with a mixture of concentrated H2SO4 and HNO3. The morphology, nature and charge of surface groups were characterized by HRTEM, XPS, FTIR and micro-electrophoresis methods. It has been shown that: adsorption of Ni(II) reaches an equilibrium value within 20–30 min; the degree of extraction of nickel ions from the solution increases with its dilution; adsorption of Ni(II) results in an insufficient decrease in the suspension pH for pristine N-CNTs (0.5–0.6 pH unit) and considerable lowering of the pH for the oxidized sample (up to 2.5 pH unit); the adsorption isotherms are described by the Langmuir equation; the plateau amounts of adsorption (35–40 mg g−1) are almost the same for both as-prepared and oxidized samples; at pH 8 and higher a sharp increase in adsorption is observed which is caused by nickel hydroxide precipitation. The spectroscopic, adsorption, electrophoretic and pH measurement data testify that below pH 8 the major mechanism of adsorption by as-prepared N-CNTs is the donor–acceptor interaction between the free electron pair of N atoms incorporated into the nanotube lattice and vacant d-orbital of the adsorbing Ni(II) ions. For the oxidized N-CNTs ion-exchange processes with a release of H+ play a decisive role.

Graphical abstract: Comparative study of Ni(ii) adsorption by pristine and oxidized multi-walled N-doped carbon nanotubes

Article information

Article type
Paper
Submitted
21 Nov 2019
Accepted
11 Jan 2020
First published
17 Jan 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 3184-3191

Comparative study of Ni(II) adsorption by pristine and oxidized multi-walled N-doped carbon nanotubes

R. Balog, M. Manilo, L. Vanyorek, Z. Csoma and S. Barany, RSC Adv., 2020, 10, 3184 DOI: 10.1039/C9RA09755D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements