Issue 30, 2020, Issue in Progress

Synthesis and gas permeation properties of thermally rearranged poly(ether-benzoxazole)s with low rearrangement temperatures

Abstract

The diamine monomer, 9,9-bis[4-(4-amino-3-hydroxylphenoxy)phenyl] fluorene (bis-AHPPF) was successfully synthesized according to our modified method. A series of hydroxyl-containing poly(ether-imide)s (HPEIs) were prepared by polycondensation of the bis-AHPPF diamine with six kinds of dianhydrides, including 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA), pyromellitic dianhydride (PMDA), 3,3′,4,4′-biphenyl tetracarboxylic diandhydride (BPDA), 3,3′,4,4′-oxydiphthalic anhydride (ODPA), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4′-(hexafluoroisopropylidine)diphtalic anhydride (6FDA) followed by thermal imidization. The corresponding thermally rearranged (TR) membranes were obtained by solid state thermal treatment at high temperature under a nitrogen atmosphere. The chemical structure, and physical, thermal and mechanical properties of the HPEI precursors were characterized. The effects of heat treatment temperature and dianhydrides on the gas transport properties of the poly(ether-benzoxazole) (PEBO) membranes were also investigated. It was found that these HPEIs showed excellent thermal and mechanical properties. All the HPEI precursors underwent thermal conversion in a N2 atmosphere with low rearrangement temperatures. The gas permeabilities of the PEBO membranes increased with the increase of thermal treatment temperature. When HPEI–6FDA was treated at 450 °C for 1 h, the H2, CO2, O2 and N2 permeabilities of the membrane reached 239.6, 196.04, 46.41 and 9.25 Barrers coupled with a O2/N2 selectivity of 5.02 and a CO2/N2 selectivity of 21.19. In six TR-PEBOs, PEBO–6FDA exhibited the lowest rearrangement temperature and largest gas permeabilities. Therefore, thermally rearranged membranes from bis-AHPPF-based HPEIs are expected to be promising materials for gas separation.

Graphical abstract: Synthesis and gas permeation properties of thermally rearranged poly(ether-benzoxazole)s with low rearrangement temperatures

Article information

Article type
Paper
Submitted
07 Jan 2020
Accepted
25 Apr 2020
First published
05 May 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 17461-17472

Synthesis and gas permeation properties of thermally rearranged poly(ether-benzoxazole)s with low rearrangement temperatures

Y. Lu, J. Zhang, G. Xiao, L. Li, M. Hou, J. Hu and T. Wang, RSC Adv., 2020, 10, 17461 DOI: 10.1039/D0RA00145G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements