Issue 15, 2020, Issue in Progress

A pressure-assisted annealing method for high quality CsPbBr3 film deposited by sequential thermal evaporation

Abstract

All-inorganic CsPbBr3 perovskite solar cells have triggered incredible interest owing to their superior stability, especially under high temperature conditions. Different from the organic–inorganic hybrid perovskites, inorganic CsPbBr3 perovskite always need a high annealing temperature for the formation of a cubic phase. Generally, the higher temperature (over 300 °C) and longer annealing time will promote the growth of CsPbBr3, resulting in larger grain sizes and lower trap density in the crystals. However, CsPbBr3 perovskite can also be damaged by excessive annealing temperature (∼350 °C) and time, since PbBr2 only has a melting temperature close to 357 °C. To address this issue, herein, we developed a novel pressure-assisted annealing method to prevent the sublimation of PbBr2 at high temperature. The CsPbBr3 films were firstly deposited by sequential thermal evaporation, and then annealed at 335 °C in an alloy pressure vessel. By controlling the pressure of the vessel, we obtained CsPbBr3 films with various morphologies. At normal atmospheric pressure, the as-prepared CsPbBr3 film exhibited small grain sizes and was full of pinholes. With the increase of annealing pressure, the grain sizes of the film showed a significant increasing trend, and the pinholes gradually vanished. When the pressure value came to 10 MPa, compact and uniform CsPbBr3 films with large grain sizes were obtained. Based on these films, CsPbBr3 perovskite solar cells with FTO/compact-TiO2/CsPbBr3/carbon architecture achieved a champion power conversion efficiency of 7.22%.

Graphical abstract: A pressure-assisted annealing method for high quality CsPbBr3 film deposited by sequential thermal evaporation

Supplementary files

Article information

Article type
Paper
Submitted
15 Jan 2020
Accepted
19 Feb 2020
First published
02 Mar 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 8905-8909

A pressure-assisted annealing method for high quality CsPbBr3 film deposited by sequential thermal evaporation

J. Hua, X. Deng, C. Niu, F. Huang, Y. Peng, W. Li, Z. Ku and Y. Cheng, RSC Adv., 2020, 10, 8905 DOI: 10.1039/D0RA00446D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements