CO2 photoreduction to CO/CH4 over Bi2W0.5Mo0.5O6 solid solution nanotubes under visible light
Abstract
In this work, Bi2W0.5Mo0.5O6 solid solution nanotubes have been synthesized through a structure-directing hard template approach, which demonstrated greatly enhanced CO2 photoreduction to CO/CH4. The crystalline phase, components and morphologies of the as-prepared composites were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The present design of Bi2W0.5Mo0.5O6 solid solution nanotubes leads to remarkably enhanced photocatalytic activities with a peak CO/CH4 production rate of 6.55/3.75 mmol g−1 h−1 under visible light irradiation at room temperature, which was about 7 times that on pure Bi2WO6 and Bi2MoO6 nanotubes, respectively. Hollow nanotubular structures and synergistic electronic effects of various elements contribute to the enhanced visible light photocatalytic activity of Bi2W0.5Mo0.5O6 solid solution nanotubes.